
Convex and quasiconvex functions on
trees

R.B.Bapat

Indian Statistical Institute

New Delhi



The first part is based on:

RBB, Kalita, Nath, Sarma;
Convex and quasiconvex functions on
trees and their applications, Linear
Algebra Appl., 2017



Matrices associated with a graph

Adjacency matrix A

Laplacian matrix
L = diag(d1, . . . , dn)− A

Distance matrix D



Trees
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The distance matrix of the tree is given by

D =



0 1 2 2 3 3 4
1 0 1 1 2 2 3
2 1 0 2 3 3 4
2 1 2 0 1 1 2
3 2 3 1 0 2 3
3 2 3 1 2 0 1
4 3 4 2 3 1 0





How do we define the “center” of a graph?

Classical notions:

Center

Median

Centroid



Corresponding functions on the
vertex set:

Center —– Eccentricity

Median —– Transmission index

Centroid —– Maximum branch
weight (or weight)



Eccentricity

Eccentricity of a vertex i is the
maximum of d(i , j) over j .



Center of a tree

The center of a graph is the subgraph
induced by the vertices of minimum
eccentricity.

Theorem (Jordan, 1869) The center
of a tree consists of either a single
vertex or a pair of adjacent vertices.

The center is located by a simple
recursive procedure.



The eccentricity increases
monotonically along any path starting
at a center.



A proof using the pigeonhole principle

Graham, Entringer and Szekely,
American Math. Monthly, 1994



Median of a tree

Transmission index:

Tr(i) =
∑
j

d(i , j)

The median of a graph is a vertex v
with minimum transmission index.



In any graph there is either one
median or two medians which are
adjacent.

The transmission index is
monotonically increasing along any
path starting at a median.



Centroid of a tree

Weight of a vertex:

The weight of v is the number of
vertices in the largest component of
T − v .

The vertex v is a centroid of the tree
T if it has the least weight.



In any graph there is either one
centroid or two centroids that are
adjacent.

The weight is monotonically
increasing along any path starting at
a centroid.

Theorem In any tree the median
and the centroid coincide.



Consider the tree:

◦

◦ ◦ ◦y ◦x ◦ ◦ ◦

◦

In this tree x is the center and y is
the centroid (and the median).







Perron center of a tree

Let u be the Perron vector of the
distance matrix D of a tree. A vertex
i is a Perron center if ui is the least
coordinate of u.



Theorem In any tree there is either
one Perron center or two Perron
centers which are adjacent. Moreover
the coordinates of u increase along
any path starting at a Perron center.

Observation In almost any tree the
Perron center and the median
coincide.



Theorem In any tree there is either
one Perron center or two Perron
centers which are adjacent. Moreover
the coordinates of u increase along
any path starting at a Perron center.

Observation In almost any tree the
Perron center and the median
coincide.



Subtree core For a vertex v , let
f (v) be the number of subtrees
passing through v . The subtree core
consists of vertices at which f (v) is
maximized.



Let T be a tree with
V (T ) = {1, . . . , n}, n ≥ 3, and let
f : V (T ) −→ (0,∞).

A vertex i ∈ V (T ) will be called an
f -center if

f (i) = min
j

f (j).



Some desirable properties of f :

(i) There is a unique f -center or
exactly two f -centers which are
adjacent.
(ii) Along any path starting at a
center, and not containing another
center, the values of f monotonically
increase.
Clearly (ii) implies (i).



Convexity and quasiconvexity

Let T be a tree with
V (T ) = {1, . . . , n}, n ≥ 3, and let
f : V (T ) −→ (0,∞). We say that f
is convex if for any distinct
i , j , k ∈ V (T ) with i ∼ j , j ∼ k we
have 2f (j) ≤ f (i) + f (k)

strictly convex if 2f (j) < f (i) + f (k).



quasiconvex if for any distinct
i , j , k ∈ V (T ) with i ∼ j , j ∼ k we
have f (j) ≤ max{f (i), f (k)}

strictly quasiconvex if
f (j) < max{f (i), f (k)}.



Clearly, if f is convex (strictly
convex) then it is quasiconvex
(strictly quasiconvex).

If f is strictly quasiconvex, then for
i ∼ j ∼ k,
f (i) < f (j) =⇒ f (j) < f (k).

Hence, if f is strictly quasiconvex,
then (ii), and hence (i), holds.



Theorem Let T be a tree with
V (T ) = {1, . . . , n}, let
g : (0,∞) −→ (0,∞) be an
increasing, convex function such that
g(x) > 0 if x > 0. Let x1, . . . , xn be
positive numbers and let

f (i) =
n∑

j=1

g(dij)xj , i = 1, . . . , n.

Then f is strictly convex.



If
∑n

j=1 g(dij)xj is replaced by
maxnj=1 g(dij)xj then f is strictly
quasiconvex.



It follows that eccentricity is strictly
quasiconvex while transmission index
is strictly convex.
Hence both eccentricity and
transmission index satisfy (i) and (ii).



Properties of the Perron center also
follow from the Theorem.



More notions of center

This part is based on joint work with
Ronit Neogy.



Telephone center (Mitchell) The
switchboard number of a vertex x in
a tree T , denoted sb(x), is defined to
be the maximum number of distinct
paths having x as an interior vertex.
The telephone center of T is the set
of all vertices of T with the largest
switchboard number.



Security center (Slater)
If x , y ∈ V (G ), then V (x , y) denotes
the set of vertices in G that are
closer to x than to y . For a vertex x
in a tree T , the security number of x ,
denoted sec(x) is the smallest value
of |V (x , v)| − |V (v , x)| over all
v ∈ V (T )− {x}. The security center
of T consists of all vertices of T with
the largest security number.



Accretion center (Slater)
An ordered n-tuple (x1, x2, . . . , xn) of
the n vertices of T is called a
sequential labeling provided the
subgraph T [{x1, x2, . . . , xj}] induced
by (x1, x2, . . . , xj) is connected, for all
j ∈ {1, . . . , n}. The sequential
number of a vertex x , denoted
seq(x), is the number of sequential
labelings of T with x as first entry.



The accretion center of T is the set
of all vertices of T with the largest
sequential number.



Weight balance center (Reid and
DePalma) The weight balance of a
vertex x in a tree T is defined to be
the integer min{|n1 − n2|} where the
minimum is taken over all subtrees
T1 and T2 of T such that
V (T ) = V (T1) ∪ V (T2),
V (T1) ∩ V (T2) = {x}, |V (T1)| = n1

and |V (T2)| = n2.



The weight balance center of T is
the set of all vertices of T with
smallest weight balance.



Processing center(Gerstel and
Zaks) A processing sequence for a
tree T of order n is a permutation
x1, x2, . . . , xn of its vertices so that x1

is a leaf of T , and for each i ,
2 ≤ i ≤ n, xi is a leaf of the subtree
T − {x1, x2, . . . , xi−1}.



The processing number of a vertex x ,
denoted proc(x), is the index of the
earliest possible position for x over all
processing sequences.

The processing center of a tree is the
set of vertices with the largest
processing number.



Telephons center —– switchboard
number

Security center —– security number

Accretion center —– sequential
number



Weight balance center —– weight
balance

Processing center —— processing
number



The basic reference for these
definitions is the survey paper:
K. B. Reid, Centrality Measures in
Trees, Interdisciplinary Mathematical
Sciences, Advances in
Interdisciplinary Applied Discrete
Mathematics, pp. 167-197 (2010)



Centers based on the Laplacian matrix

This part is based on:
(RBB, Chai Wah Wu) Control
localization in dynamical systems
connected via a weighted tree, IEEE
Transactions on Systems, Man, and
Cybernetics: Systems, 2016.



The work is motivated by the
problem of localization of control in
dynamical systems coupled via a
weighted tree, when only a single
system receives control.



Since L is singular, λ1(L) = 0. The
eigenvalue λ2(L) is known as the
algebraic connectivity of the graph
and it is positive if and only if the
graph is connected. This terminology
is due to Fiedler who proved some
fundamental properties of an
eigenvector corresponding to the
algebraic connectivity.



Trees are classified into two types
according to whether the Fiedler
vector has a zero coordinate or
otherwise.







The Fiedler vector exhibits
monotonicity properties.

Theorem Let T be a tree with
Fiedler vector y . Then |y | is convex.
It is strictly convex for a Type II tree.

The corresponding center (which may
be called Fiedler center) is known as
a characteristic vertex.



Let T be a tree with vertex set
{1, . . . , n}, and let L be the
Laplacian matrix of T . For
i = 1, . . . , n. We set
Let Li to be the matrix obtained by
deleting row and column i from L.
Let αi = Perron root of L−1

i .



Let L̃i(c) to be the matrix obtained
by adding c > 0 to the i -th diagonal
element in L. Let
βi(c) = Perron root of L̃i(c)−1.
It can be seen that

lim
c→∞

βi(c) = αi .



Theorem αi , i = 1, . . . , n is strictly
convex. Furthermore, the
corresponding center coincides with
the characterisic vertex.



Theorem βi(c), i = 1, . . . , n is
strictly convex.

We conjecture that βi(c) is also
minimized at a characteristic vertex.

Since
lim
c→∞

βi(c) = αi .

the conjecture is true for large c.



Thank You!


